翻訳と辞書
Words near each other
・ Gauteng Roller Hockey League
・ Gautestad
・ Gautham Hospital
・ Gautham K Sharma
・ Gautham Karthik
・ Gautham Krishna
・ Gautham Menon
・ Gauthamadas Udipi
・ Gauthameswarar Temple, Kumbakonam
・ Gauthami Nair
・ Gauthier
・ Gauthier Biomedical
・ Gaussian gravitational constant
・ Gaussian grid
・ Gaussian integer
Gaussian integral
・ Gaussian isoperimetric inequality
・ Gaussian measure
・ Gaussian moat
・ Gaussian network model
・ Gaussian noise
・ Gaussian optics
・ Gaussian orbital
・ Gaussian period
・ Gaussian polar coordinates
・ Gaussian process
・ Gaussian process emulator
・ Gaussian q-distribution
・ Gaussian quadrature
・ Gaussian quantum Monte Carlo


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gaussian integral : ウィキペディア英語版
Gaussian integral

The Gaussian integral, also known as the Euler–Poisson integral is the integral of the Gaussian function ''e''−''x''2 over the entire real line. It is named after the German mathematician and physicist Carl Friedrich Gauss. The integral is:
:\int_^ e^\,\mathrm d x = \sqrt
This integral has a wide range of applications. For example, with a slight change of variables it is used to compute the normalizing constant of the normal distribution. The same integral with finite limits is closely related both to the error function and the cumulative distribution function of the normal distribution. In physics this type of integral appears frequently, for example, in quantum mechanics, to find the probability density of the ground state of the harmonic oscillator, also in the path integral formulation, and to find the propagator of the harmonic oscillator, we make use of this integral.
Although no elementary function exists for the error function, as can be proven by the Risch algorithm, the Gaussian integral can be solved analytically through the methods of multivariable calculus. That is, there is no elementary ''indefinite integral'' for
:\int e^\,dx,
but the definite integral
:\int_^ e^\,\mathrm d x
can be evaluated.
The Gaussian integral is encountered very often in physics and numerous generalizations of the integral are encountered in quantum field theory.
==Computation==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gaussian integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.